29 mag 2023

Scanning TLS Server Configurations With Burp Suite

In this post, we present our new Burp Suite extension "TLS-Attacker".
Using this extension penetration testers and security researchers can assess the security of TLS server configurations directly from within Burp Suite.
The extension is based on the TLS-Attacker framework and the TLS-Scanner, both of which are developed by the Chair for Network and Data Security.

You can find the latest release of our extension at: https://github.com/RUB-NDS/TLS-Attacker-BurpExtension/releases

TLS-Scanner

Thanks to the seamless integration of the TLS-Scanner into the BurpSuite, the penetration tester only needs to configure a single parameter: the host to be scanned.  After clicking the Scan button, the extension runs the default checks and responds with a report that allows penetration testers to quickly determine potential issues in the server's TLS configuration.  Basic tests check the supported cipher suites and protocol versions.  In addition, several known attacks on TLS are automatically evaluated, including Bleichenbacher's attack, Padding Oracles, and Invalid Curve attacks.

Furthermore, the extension allows fine-tuning for the configuration of the underlying TLS-Scanner.  The two parameters parallelProbes and overallThreads can be used to improve the scan performance (at the cost of increased network load and resource usage).

It is also possible to configure the granularity of the scan using Scan Detail and Danger Level. The level of detail contained in the returned scan report can also be controlled using the Report Detail setting.

Please refer to the GitHub repositories linked above for further details on configuration and usage of TLS-Scanner.

Scan History 

If several hosts are scanned, the Scan History tab keeps track of the preformed scans and is a useful tool when comparing the results of subsequent scans.

Additional functions will follow in later versions

Currently, we are working on integrating an at-a-glance rating mechanism to allow for easily estimating the security of a scanned host's TLS configuration.

This is a combined work of Nurullah Erinola, Nils Engelbertz, David Herring, Juraj Somorovsky, Vladislav Mladenov, and Robert Merget.  The research was supported by the European Commission through the FutureTrust project (grant 700542-Future-Trust-H2020-DS-2015-1).

If you would like to learn more about TLS, Juraj and Robert will give a TLS Training at Ruhrsec on the 27th of May 2019. There are still a few seats left.
Related links
  1. Black Hat Hacker Tools
  2. New Hacker Tools
  3. Hacking Tools For Pc
  4. Install Pentest Tools Ubuntu
  5. Hacker Tools Linux
  6. Pentest Tools Review
  7. Hacking Apps
  8. Pentest Tools Review
  9. Hacking Tools Software
  10. What Are Hacking Tools
  11. Pentest Tools Tcp Port Scanner
  12. Tools 4 Hack
  13. Best Hacking Tools 2020
  14. Pentest Tools Framework
  15. Hack Tools 2019
  16. Hak5 Tools
  17. Hacker Tools Mac
  18. Pentest Tools For Mac
  19. Hack Tools Online
  20. Bluetooth Hacking Tools Kali
  21. Hack Tools
  22. Hacker Tool Kit
  23. Pentest Tools Download
  24. Underground Hacker Sites
  25. Pentest Tools Find Subdomains
  26. Pentest Tools Online
  27. Hacker Tools Mac
  28. Hack Tools For Ubuntu
  29. Hacker Tools Apk Download
  30. Hacking Tools Mac
  31. Hacker Tools Online
  32. Hack Tools
  33. Pentest Tools For Ubuntu
  34. Hacker Search Tools
  35. Hack Tools For Pc
  36. Pentest Tools Subdomain
  37. Pentest Tools Kali Linux
  38. Best Hacking Tools 2019
  39. New Hacker Tools
  40. Nsa Hacker Tools
  41. Ethical Hacker Tools
  42. Pentest Tools For Windows
  43. Hack App
  44. Hack App
  45. Hacking Tools For Mac
  46. New Hack Tools
  47. Hacking Tools Mac
  48. Github Hacking Tools
  49. Hacking Tools 2020
  50. Hacker Tools For Mac
  51. Hacking Tools For Pc
  52. Hack Tools Online
  53. Hacking Tools Kit
  54. Hacking Tools Name
  55. Hacker Hardware Tools
  56. Hacking Tools For Windows
  57. Hacking Tools Online
  58. Hacking Tools Kit
  59. Bluetooth Hacking Tools Kali
  60. Hacking Tools 2019
  61. Hacking Tools
  62. Hacking Tools And Software
  63. Hacker Tools Free Download
  64. Pentest Tools Open Source
  65. Pentest Tools Url Fuzzer
  66. Hacking Tools Windows 10
  67. Pentest Tools Port Scanner
  68. Pentest Tools Download
  69. Hack Tool Apk No Root
  70. Pentest Tools Url Fuzzer
  71. Pentest Tools Subdomain
  72. Growth Hacker Tools
  73. Easy Hack Tools
  74. Pentest Automation Tools
  75. Hack Tools
  76. Hacking Tools Mac
  77. Underground Hacker Sites
  78. Nsa Hack Tools
  79. Pentest Tools List
  80. Hack Tools For Pc
  81. Hacking Tools Hardware
  82. Nsa Hack Tools Download
  83. Pentest Tools Find Subdomains
  84. Hack Tools
  85. Hacker Tools Apk
  86. Hacker Tools For Pc
  87. Hacker Tools Free
  88. Pentest Reporting Tools
  89. Hack App
  90. Beginner Hacker Tools
  91. What Are Hacking Tools
  92. Hacking App
  93. Free Pentest Tools For Windows
  94. Pentest Tools Kali Linux
  95. Bluetooth Hacking Tools Kali
  96. Blackhat Hacker Tools
  97. Hack Tools Github
  98. Hacking Tools For Windows 7
  99. Hacker Search Tools
  100. Hack Tools For Pc
  101. Termux Hacking Tools 2019
  102. Hacker
  103. Hacking Tools For Windows
  104. Github Hacking Tools
  105. What Are Hacking Tools
  106. Pentest Tools For Mac
  107. Hacker Tools Free Download

What Is Cybersecurity And Thier types?Which Skills Required To Become A Top Cybersecurity Expert ?

What is cyber security in hacking?

The term cyber security  refers to the technologies  and processes designed  to  defend computer system, software, networks & user data from unauthorized access, also from threats distributed through the internet by cybercriminals,terrorist groups of hacker.

Main types of cybersecurity are
Critical infrastructure security
Application security
Network Security 
Cloud Security 
Internet of things security.
These are the main types of cybersecurity used by cybersecurity expert to any organisation for safe and protect thier data from hack by a hacker.

Top Skills Required to become Cybersecurity Expert-

Problem Solving Skills
Communication Skill
Technical Strength & Aptitude
Desire to learn
Attention to Detail 
Knowledge of security across various platforms
Knowledge of Hacking
Fundamental Computer Forensic Skill.
These skills are essential for become a cybersecurity expert. 
Cyber cell and IT cell these are the department  in our india which provide cybersecurity and looks into the matters related to cyber crimes to stop the crime because in this digitilization world cyber crime increasing day by day so our government of india also takes the immediate action to prevent the cybercrimes with the help of these departments and also arrest the victim and file a complain against him/her with the help of cyberlaw in our constitution.


Related links
  1. Hacking App
  2. Tools Used For Hacking
  3. Hacker Tools For Windows
  4. Pentest Tools Url Fuzzer
  5. Growth Hacker Tools
  6. Hacking Tools Software
  7. Hacking Tools For Windows
  8. Hacking Tools For Beginners
  9. Hack Tools Online
  10. Hacker Tools 2020
  11. Pentest Tools Apk
  12. Pentest Tools Subdomain
  13. Install Pentest Tools Ubuntu
  14. Growth Hacker Tools
  15. Hacking Tools
  16. New Hack Tools
  17. Hacker Tools 2019
  18. Hack Tools Online
  19. Beginner Hacker Tools
  20. Pentest Automation Tools
  21. Pentest Tools Subdomain
  22. Wifi Hacker Tools For Windows
  23. Hacking Tools For Mac
  24. Hacker Tools 2020
  25. Hack Tools Github
  26. Pentest Tools Review
  27. Usb Pentest Tools
  28. Hack Rom Tools
  29. Hack Tools For Games
  30. Hacking App
  31. Easy Hack Tools
  32. Hacking Tools For Mac
  33. Hacker Search Tools
  34. Tools 4 Hack
  35. Pentest Tools Linux
  36. Pentest Tools Github
  37. Pentest Tools
  38. Hack Rom Tools
  39. Pentest Tools Bluekeep
  40. Hacking Tools Mac
  41. Hacking Tools For Windows
  42. Hacker Tools Hardware
  43. Pentest Tools Website
  44. Hack Tool Apk No Root
  45. Hacker Tools Online
  46. Hacker Tools Apk
  47. Hacker Tools For Windows
  48. Hacking Tools For Pc
  49. Hacking Tools
  50. Top Pentest Tools
  51. Easy Hack Tools
  52. Hacking Tools Software
  53. Hacker Hardware Tools
  54. Hacker Tools Online
  55. How To Hack
  56. Pentest Tools Windows
  57. Bluetooth Hacking Tools Kali
  58. Hacking Tools For Beginners
  59. Game Hacking
  60. Beginner Hacker Tools
  61. Best Pentesting Tools 2018
  62. Hacking App
  63. Pentest Box Tools Download
  64. Pentest Recon Tools
  65. Hacker Techniques Tools And Incident Handling
  66. Pentest Recon Tools
  67. Tools Used For Hacking
  68. Hacker Tools Free Download
  69. Hacking App
  70. Hacking Tools
  71. Hacking Tools
  72. Hacking Tools Kit
  73. Bluetooth Hacking Tools Kali
  74. Pentest Automation Tools
  75. Hacker Tool Kit
  76. Hackers Toolbox
  77. Nsa Hacker Tools
  78. Hacker Tools Apk Download

Probing For XML Encryption Weaknesses In SAML With EsPReSSO

Security Assertion Markup Language (SAML) is an XML-based standard commonly used in Web Single Sign-On (SSO) [1]. In SAML, the confidentiality of transferred authentication statements against intermediaries can be provided using XML Encryption [2]. However, implementing XML Encryption in a secure way can be tricky and several attacks on XML Encryption have been identified in the past [3] [4]. Therefore, when auditing a SAML endpoint, one should always consider testing for vulnerabilities in the XML Encryption implementation.

This blog post introduces our latest addition to the SAML Attacker of our BurpSuite extension EsPReSSO: the Encryption Attack tab. The new tab allows for easy manipulation of the encrypted parts within intercepted SAML responses and can, therefore, be used to quickly assess whether the SAML endpoint is vulnerable against certain XML Encryption attacks.


Weaknesses of XML Encryption

Implementations of XML Encryption can be vulnerable to adaptive chosen ciphertext attacks. This is a class of attacks in which the attacker sends a sequence of manipulated ciphertexts to a decryption oracle as a way to gain information about the plaintext content.
Falsely implemented XML Encryption can be broken using:
  • an attack against the CBC-mode decryption (quite similar to a padding oracle attack) [3] or
  • a Bleichenbacher attack against the RSA-PKCS#1 encryption of the session key  [4].
SAML makes use of XML Encryption and its implementations could, therefore, also be vulnerable to these attacks.

XML Encryption in SAML

To support confidential transmission of sensitive data within the SAML Assertion, assertions can be encrypted using XML Encryption. An EncryptedAssertion is shown in the abridged example below.

<EncryptedAssertion>
  <EncryptedData>
    <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
    <KeyInfo>
      <EncryptedKey>
        <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
        <CipherData>
          <CipherValue>
            [...]
          </CipherValue>
        </CipherData>
      </EncryptedKey>
    </KeyInfo>
    <CipherData>
        <CipherValue>
          [...]
        </CipherValue>
    </CipherData>
  </EncryptedData>
</EncryptedAssertion>

The EncryptedAssertion contains an EncryptedData element, which in turn is the parent of the EncryptionMethod, KeyInfo, and CipherData elements.  SAML makes use of what is referred to as a hybrid encryption scheme. This is done using a session key which symmetrically encrypts the payload data (the example uses AES-128 in CBC mode), resulting in the ciphertext contained in the EncryptedAssertion/EncryptedData/CipherData/CipherValue child element. The session key itself is encrypted using an asymmetric encryption scheme. In our example, RSA-PKCS#1.5 encryption is used with the public key of the recipient, allowing the contents of the the EncryptedKey child element to be derived from the KeyInfo element. 

Encryption Attacker

Our BurpSuite extension EsPReSSO can help detect vulnerable implementations with the newly integrated Encryption Attacker within EsPReSSO's SAML module.

Once a SAML response which contains an EncryptedAssertion has been intercepted, open the SAML tab, select the Attacks pane, and choose Encryption from the dropdown menu. This works in Burp's Proxy, as well as in the Repeater tool, and is depicted below.
As sketched out above, the symmetric session key is encrypted using the recipient's public key. Since the key is public, anybody can use it to encrypt a selected symmetric key and submit a valid encryption of arbitrary messages to the recipient. This is incredibly helpful because it allows us to produce ciphertexts that decrypt the chosen plaintexts. To accomplish this, one can purposefully send invalidly padded messages, or messages containing invalid XML, as a method to trigger and analyze the different reactions of the decryption endpoint (i.e, turning the endpoint into a decryption oracle). To facilitate these investigations, the new Encryption Attacker makes this process dead simple.
The screenshot above shows the essential interface of the new encryption tab:
At the top, the certificate used to encrypt the symmetric session key can be pasted into the text field. This field will be pre-filled automatically if the intercepted SAML message includes a certificate in the KeyInfo child element of the EncryptedData element. The Update Certificate checkboxes above the text area can be used to include the certificate in the manipulated SAML message.
In the Symmetric Key text field, the hexadecimal value of the symmetric session key can be set. Choose the asymmetric algorithm from the dropdown menu and click Encrypt key -- this will update the corresponding KeyInfo elements of the intercepted SAML message. 

The payload in the text area labeled XML data can now be entered. Any update in the XML data field will also be reflected in the hexadecimal representation of the payload (found on right of the XML data field). Note that this is automatically padded to the blocklength required by the symmetric algorithm selected below. However, the payload and the padding can be manually adjusted in the hex editor field.

Eventually, click the Encrypt content button to generate the encrypted payload. This will apply the changes to the intercepted SAML message, and the manipulated message using Burp's Forward or Go button can now be forwarded, as usual.

Probing for Bleichenbacher Oracles

Bleichenbacher's attack against RSA-PKCS1 v1.5 encryption abuses the malleability of RSA to draw conclusions about the plaintext by multiplying the ciphertext with adaptively chosen values, and observing differences in the received responses. If the (error-) responses differ for valid and invalid PKCS1 v1.5 ciphertexts, Bleichenbachers' algorithm can be used to decrypt the ciphertext without knowing the private key [6].

To determine whether or not a SAML endpoint is vulnerable to Bleichenbacher's Attack, we simply need to check if we can distinguish those responses received when submitting ciphertexts that are decrypted into invalidly formatted PKCS1 v1.5 plaintexts, from the responses we receive when sending ciphertexts that are decrypted into validly formatted plaintexts. 

Recall that PKCS1 v1.5 mandates a certain format of the encrypted plaintext, namely a concatenation of a BlockType 00 02, a randomized PaddingString (PS) that includes no 00 bytes, a 00 (NULL-byte) as delimiter, and the actual plaintext message. The whole sequence should be equal in size to the modulus of the RSA key used. That is, given the byte length k of the RSA modulus and the message length |m|, PS has the length |PS| = k - 3 - |m|. Furthermore, PKCS1 v1.5 demands that |PS| to be at least eight bytes long [5]. 

In SAML, the recipient's public key is usually known because it is published in the metadata, or even included in the EncryptedAssertion. For this reason, we do not need to fiddle around with manipulated ciphertexts. Instead, we simply submit a validly formatted RSA-PKCS1 v1.5 encrypted message and an encrypted message which deciphers into an invalidly formatted plaintext. As an example, assume an RSA public key of 2048 bits which we want to use to encrypt a 16 byte session key `01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10` (hexadecimal representation). |PS|$ is $2048/8 - 3 - 16 = 237, so a valid PKCS1 v1.5 plaintext, ready to be encrypted using `AA` for all 237 padding bytes, could look like the listing shown below.

00 02 AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA 00
01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
In the Encryption attack pane of EsPReSSO, ensure that the correct public key certificate has been added to the Certificate field. Insert a valid plaintext, such as the one above, into the Symmetric Key field and select Plain RSA encryption from the Algorithm drop down menu. Click the Encrypt button to compute the RSA transformation and apply the new EncryptedKey element to the intercepted SAML message. Now, submit the message by clicking Burp's Go or Forward button and carefully inspect the response.

Next, repeat the steps outlined above, but this time submit an invalid PKCS1 v1.5 message. For example, consider using an invalid BlockType of `12 34` instead of `00 02`, or replace the `00` delimiter so that the decryptor is unable to determine the actual message after decrypting the ciphertext. If you are able to determine from the recieved responses whether or not the submitted ciphertext decrypted into a valid PKCS1 v1.5 formatted plaintext, chances are high that the decryptor can be used as a Bleichenbacher oracle. Don't forget to take into account the actual XML data, i.e., the assertion encrypted with the new session key; by submitting valid or invalid XML, or by removing signatures from the SAML message or the assertion you may increase your chances of detecting differences in the returned responses.

Probing for Oracles in CBC-Mode Decryption

Another known attack on XML Encryption is aimed at the Cipher Block Chaining (CBC) mode, which can be used with the block ciphers AES or 3DES [2]. The attack is described in detail in this referenced paper [3] and is quite similar to Padding-Oracle attacks on CBC mode; the malleability of CBC mode encryption enables the attacker to perform a bytewise, adaptive manipulation of the ciphertext blocks which are subsequently sent to the decryptor. In most cases, the manipulated ciphertext will not decrypt to valid XML and an error will be returned. Sometimes, however, the plaintext will be parsed as valid XML, in which cases an error is thrown later on at the application layer. The attacker observes the differences in the responses in order to turn the decryptor into a ciphertext validity oracle which can be used to break the encryption.  Due to some particularities of the XML format, this attack can be very efficient, enabling decryption with about 14 requests per byte, and it is even possible to fully automate the process [7].

In order to determine if a particular SAML service provider is vulnerable to this attack, we can avoid the cumbersome ciphertext manipulation, if we are in possession of the decryptor's public key:
In the Encryption Attacker tab of EsPReSSO, add the public key certificate to the Certificate field (if necessary) and insert a symmetric key of your own devising into the  Symmetric Key text field. Select an appropriate RSA encryption method and click the Encrypt button to apply the new EncryptedKey element to the original SAML message. 

An XML message can now be inserted into the XML data text field. Select a CBC mode encryption algorithm and click Encrypt to apply the changes. As in the example above, press Burp's Go or Forward button to send the message and carefully inspect the response. Try sending invalid XML, e.g., by not closing a tag or using the `&` character without a valid entity and keep an eye open for differences in the returned responses. To manipulate the padding, the text field on the right side shows the hexadecimal representation of the plaintext, including the CBC padding. If you send a single block and set the last byte, which indicates the padding length to the blocksize, i.e. 16 or 0x10 for AES, the ciphertext should decrypt into an empty string and is generally considered "valid" XML.

Please refer to the original paper for more details, tips, and tricks for performing the actual attack [3]. 

Summary

The new XML Encryption attacker included in EsPReSSO can help security auditors to quickly assess if a SAML endpoint is vulnerable to known attacks against XML Encryption. To this end, the decryptor's public key is used in order to send suitable test vectors that can be provided in plaintext. Ciphertext manipulation is, therefore, not required. The actual process of decrypting an intercepted SAML message is, however, considered out of scope and not implemented in EsPReSSO.

In case you wonder how XML Encryption can be used in a secure fashion, here are some considerations [6]:
  • Always use an authenticated encryption mode such as AES-GCM instead of the CBC-mode encryption.
  • Using RSA-PKCS1 v1.5 within XML Encryption is particularly difficult to do in a secure manner, and it is recommended to use RSA with Optimal Asymmetric Encryption Padding (OAEP) instead [2].
  • Apply a digital signature over the whole SAML response, and ensure it is properly validated before attempting to decrypt the assertion. This should thwart the attack as a manipulated response can be recognized as such and should be rejected.
----------

Related posts


2304 Interesting News